RNA tertiary folding monitored by fluorescence of covalently attached pyrene.

نویسندگان

  • S K Silverman
  • T R Cech
چکیده

The pathways by which large RNAs adopt tertiary structure are just beginning to be explored, and new methods that reveal RNA folding are highly desirable. Here we report an assay for RNA tertiary folding in which the fluorescence of a covalently incorporated chromophore is monitored. Folding of the 160-nucleotide Tetrahymena group I intron P4-P6 domain was used as a test system. Guided by the P4-P6 X-ray crystal structure, we chose a nucleotide (U107) for which derivatization at the 2'-position should not perturb the folded conformation. A 15-mer RNA oligonucleotide with a 2'-amino substitution at U107 was derivatized with a pyrene chromophore on a variable-length tether, and then ligated to the remainder of P4-P6, providing a site-specifically pyrene-labeled P4-P6 derivative. Upon titration of the pyrene-derivatized P4-P6 with Mg(2+), the equilibrium fluorescence intensity reversibly increased several-fold, as expected if the probe's chemical microenvironment changes as the RNA to which it is attached folds. The concentration and specificity of divalent ions required to induce the fluorescence change (Mg(2+) approximately Ca(2+) > Sr(2+)) correlated well with biochemical folding assays that involve nondenaturing gel electrophoresis. Furthermore, mutations in P4-P6 remote from the chromophore that shifted the Mg(2+) folding requirement on nondenaturing gels also affected in a predictable way the Mg(2+) requirement for the fluorescence increase. Initial stopped-flow studies with millisecond time resolution suggest that this fluorescence method will be useful for following the kinetics of P4-P6 tertiary folding. We conclude that a single site-specifically tethered chromophore can report the formation of global structure of a large RNA molecule, allowing one to monitor both the equilibrium progress and the real-time kinetics of RNA tertiary folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence of covalently attached pyrene as a general RNA folding probe

Fluorescence techniques are commonly and powerfully applied to monitor biomolecular folding. In a limited fashion, the fluorescence emission intensity of covalently attached pyrene has been used as a reporter of RNA conformational changes. Here, we pursue two goals: we examine the relationship between tether identity and fluorescence response, and we determine the general utility of pyrene fluo...

متن کامل

Pyrene is highly emissive when attached to the RNA duplex but not to the DNA duplex: the structural basis of this difference

Through binding and fluorescence studies of oligonucleotides covalently attached to a pyrene group via one carbon linker at the sugar residue, we previously found that pyrene-modified RNA oligonucleotides do not emit well in the single-stranded form, yet the attached pyrene emits with a significantly high quantum yield upon binding to a complementary RNA strand. In sharp contrast, similarly mod...

متن کامل

Site-specific fluorescent labeling of large RNAs with pyrene.

Pyrene is a useful chromophore for monitoring the tertiary structure and folding of large RNAs. This unit describes the general preparation of a large RNA (>80 nucleotides in length) that has been site-specifically modified with pyrene at the 2'-position of an individual internal nucleotide. A protocol is provided for derivatizing a 2'-amino-RNA oligonucleotide with a suitably activated pyrene ...

متن کامل

The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.

Tetraloops with the generic sequence GNRA are commonly found in RNA secondary structure, and interactions of such tetraloops with "receptors" elsewhere in RNA play important roles in RNA structure and folding. However, the contributions of tetraloop-receptor interactions specifically to the kinetics of RNA tertiary folding, rather than the thermodynamics of maintaining tertiary structure once f...

متن کامل

Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods.

Fluorescence-detected stopped-flow and equilibrium methods have been used to study the mechanism for binding of pyrene (pyr)-labeled RNA oligomer substrates to the ribozyme (catalytic RNA) from Tetrahymena thermophila. The fluorescence of these substrates increases up to 25-fold on binding to the ribozyme. Stopped-flow experiments provide evidence that pyr experiences at least three different m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 43  شماره 

صفحات  -

تاریخ انتشار 1999